
~ )  Pergamon 
Int. J. Heat Mass Transfer. Vol. 38, No. 6, pp. 1019 1031,1995 

Copyright © 1995 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

00174310/95 $9.50+0.00 

0017-9310(94)00218-5 

The estimation of surface thermal behavior of 
the working roll in hot rolling process 

C. H. H U A N G  and T. M. JU  

Department of Naval Architecture and Marine Engineering, National Cheng Kung University, 
Tainan, Taiwan, Republic of China 

and 

A. A. T S E N G  

Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, 
U.S.A. 

(Received 29 December 1993 and in final form 7 July 1994) 

Abstract--A two-dimensional inverse analysis utilizing the conjugate gradient method of minimization is 
applied to estimate the surface thermal behavior (i.e. heat flux and temperature) of a roll which was used 
in steel rolling mills with water cooling. No prior information is needed for the functional forms of timewise 
and spacewise variation of the surface heat flux and temperature. The transient temperature recordings 
inside the roll are modified from the existing experimental data and serve as the simulated experimental 
data for the inverse analysis. The results show that the estimation of surface heat flux and temperature 
becomes worse when the temperature measurements are taken too far away from the surface, due to a thin 
thermal layer. Once the surface heat flux is determined, the surface heat transfer coefficients can be 
calculated based on the Fourier law, provided that the ambient temperatures are known. After the surface 
heat transfer coefficients of the roll are determined, an evaluation of the cooling system of the roll can be 

performed. 

1. INTRODUCTION 

In metal forming ]processes, the roll has been widely 
used as the tool to deform metals. The processes 
involve extremely high pressure and temperature on 
the roll surface, which may produce a large thermal 
stress in the roll to cause roll wear or spalling. There- 
fore heat transfer information is very important  for 
proper control of  the thermal crown for shape control 
or the evaluation of  direct cooling system of the roll, 
which could lead to increase in roll life [1]. Moreover ,  
knowledge of  the temperature in a rotating roll can 
also contribute to an understanding of  the friction 
behavior encountered in various kinds of  machines. 

Considerable work has been done on studying the 
thermal behavior of  the roll in rolling processes [2-6] 
based on a Lagrangian and a Eulerian coordinate 
system, respectively, but they deviate somewhat from 
the real operating situation, since the surface 
boundary condit ion of  the roll is not known during 
the rolling proces,ies. Recently, Tseng et aL [1] used 
the temperature measured from the roll surface as 
the boundary condit ion to calculate the temperature 
distribution inside the roll, as well as the surface heat 
transfer coefficients of  the roll, and obtained a good 
estimation. However,  the drawbacks are that instal- 
lation of  thermocouples on the roll surface is difficult, 
and they are easily burned out, even when used for a 
short period of  time. Therefore, if  the temperature is 

measured inside the roll and used to predict the surface 
thermal behavior of  the roll, the disadvantages in ref. 
[1] can be avoided. This technique is the so-called 
'inverse heat conduction problem'.  

Various methods of  solving the inverse heat con- 
duction problems have been discussed in the text by 
Beck et al. [7]. During the past two decades, there has 
been a great interest in the use of  the conjugate gradi- 
ent method in iterative minimization procedures, 
applied to the solution of  constrained and uncon- 
strained problems involving linear and nonlinear 
equations. More recently, the method has been 
applied to the solution of  the inverse heat conduction 
problem in a one-dimensional case [8-12], as well as 
in a two-dimensional case [13-16]. In this work the 
conjugate gradient method is adopted to estimate the 
surface heat flux of  the roll in a two-dimensional 
inverse problem. 

The method derives its basis from the per- 
turbational principle and transforms the inverse prob- 
lem into the solution of  three problems, namely, the 
direct problem, the sensitivity problem and the adjoint 
problem, together with the gradient equation. 

The commonly used steepest-descent method uti- 
lizes the direction of  negative gradient of  the func- 
tional as the search direction, while the conjugate 
gradient method uses a combinat ion of  the negative 
gradient of  the functional and the previous descent 
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NOMENCLATURE 

c heat capacity 
J(O, t) functional defined by equation 

(3) 
J'(O, t) gradient of the functional defined by 

equation (8c) 
k thermal conductivity 
pk direction of descent at the kth 

iteration 
q(R0, 0, t) unknown surface heat 

flux 
T(r, O, t) estimated temperature 
AT(r, O, t) sensitivity function satisfying the 

sensitivity problem defined by equation 
(4) 

Y(r, O, t) measured temperature. 

Greek symbols 
fl~ search step size in going from qk to  

qk+~ in equation (9) 
6 Dirac-delta function 
6v thermal layer of a roll 
e convergence criteria 
7 k conjugate coefficient, defined by 

equation (11) 
2(r, 0, t) adjoint function (or Lagrange 

multiplier) satisfying the adjoint 
problem defined by equation (7) 

p density 
a standard deviation of temperature 

measurement 
~o angular velocity of a roll. 

direction as the search direction. Obviously, methods 
which calculate each new direction of search as part of 
the descent direction at the last iteration are inherently 
more powerful than those in which the directions are 
assigned in advance. 

In Sections 2-4, we present, respectively, the for- 
mulation of the direct, sensitivity, and adjoint prob- 
lems for the determination for the functions T(r, O, t), 
AT(r, O, t) and 2(r, 0, t), respectively. Once the func- 
tions T(r, O, t), AT(r, O, t) and 2(r, 0, t) become 1vail- 
able, the conjugate gradient method is applied as 
described in Section 5 to determine the timewise and 
spacewise variation of the boundary heat flux 
q(R0, 0, t) and temperature T(Ro, O, t). 

2. THE DIRECT PROBLEM 

The initial temperature distributions of a roll are 
given as T(r, O, O) = f ( r ,  0). For time t > 0, the rolling 
process takes place and the roll surface is subjected to 
a large prescribed heat flux within the bite region, 

p roll 

Cooling f 
spray nozzle / ~N\ 

Strip 

Thermocouple used 
in case ( i ) Thermoeouple used 

k 0 T =  
O r  

6 T 

S p r  a 

B i te  

Fig. 2. Detail geometry and grid distribution of  a work roll. 

while the heat will be dissipated into the ambience for 
the remaining surfaces. Figure 1 indicates the general 
illustration of the roll system and Fig. 2 shows the 
detail geometry and grid distribution of a work roll. 

Using a Eulerian description and assuming constant 
thermal properties, the mathematical formulation 
governing the transient temperature fields T(r, O, t) for 
a homogeneous and isotropic work roll is given by : 

fO2T 1 OT 1 O T'~ OT OT 

i n R i < r < R o  0 < 0 < 2 ~ z  t > 0  (la) 

0T 
Or 0 at r = R i  t > 0  (lb) 

kor 
Or =q(O' t )  at r = R o  t > 0  (lc) 

Fig. 1. General illustration of the roll system. T(r, 0, t) = T(r, 2n, t) 
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at 0 = 0 ,  and 0 = 2 n  t > 0  (ld) 

T(r,O,O)=f(r,O) for t = 0  (le) 

where r and 0 are the radial and circumferential direc- 
tions, respectively ; co is the angular velocity and ct is 
the thermal diffusivity of the roll. The above par- 
ameters are assumed constant and known, while 
q(O, t )= q(Ro, O, t) is the unknown boundary heat 
flux. Since the roll is rapidly rotating, all temperature 
variations are localized in a very thin layer near the 
surface : thus only a thin layer needs to be considered 
in the analysis. Therefore the interior boundary con- 
dition is taken a,; shown in equation (lb), where 
R0-  Ri = 6T, and &v is taken as the depth of the steady- 
state skin thermal layer [17]. 

The Eulerian description used here will result in an 
elliptical-type governing equation having both con- 
duction and convection terms, and the numerical solu- 
tions of this type will exhibit oscillation when the 
rotating speed is ]~igh [17]. Such a difficulty can be 
eliminated by using upwind differencing to approxi- 
mate the convection term, but, in the mean time, an 
artificial diffusion Ctp will be produced. The equivalent 
governing equation becomes 

1/632T 10T ' ]+  1 632T O T + c o ~  
°ct~fi-r2 +7  63r) (°~+°%)r2 630 2 - c3t 

in R i < r < R o  0 < 0 < 2 ~  t > 0  (2a) 

dT 
63r 0 at r Ri t > 0  (2b) 

k ~T 7 r =  q(0' t)  at r - - R o  t > 0  (2c) 

T(r,O,t)=T(r,2;~,t) at 0 = 0 ,  and 0 = 2 g  t > 0  

(2d) 

T(r, O, O) = f(r, O) for t = 0 (2e) 

where %=~r2coAO[1-co(At/AO)] is the artifical 
diffusion which depends on the circumferential and 
time mesh sizes as well as the angular velocity 
involved. The above direct problem can be solved by 
using alternating directional implicit (ADI) tech- 
niques. 

The inverse analysis utilizing the conjugate gradient 
method requires the solution of direct, sensitivity and 
adjoint problems, together with the gradient equation. 
The developments of the sensitivity and adjoint equa- 
tions and their solutions are discussed below. 

3. THE SENSITIVITY PROBLEM 

The solution of problem (2) with surface heat flux 
q(O, t) unknown ,can be recast as a problem of opti- 
mum control, i.e choose the control function q(O, t) 
such that it minimizes the following functional : 

t f  

J(q(O, t)) = (3) Ii"fo(T-Y)2dtdO 
where T(Rm, O, t) and Y(Rm, O, t) are the estimated and 
measured temperatures at the positions (Rm, 0). If  the 
estimation of q(O, t) is available, the temperature T can 
be obtained from the solution of the direct problem at 
the specified measurement positions. 

It is assumed that, when q(O, t) undergoes an 
increment Aq(0, t) ; then the temperature T(r, 0, t), 
changes by an amount AT(r, 0, t). To construct the 
sensitivity problem satisfying the function AT(r, O, t), 
we replace T by T-q-AT and q by q+Aq in the direct 
problem (2) and then subtract from it the original 
problem (2). The following sensitivity problem is 
obtained for the determination of the function 
AT(r, 0, t) : 

[t;32AT 1 t~AT'~ 
+r-m-, ) 

1 632AT 63AT 63AT 
+ tot + 0CP) r2 " x 630 2 C3t 630 

m + c o - -  

in Ri < r < R0 0 < 0 < 2n t > 0 (4a) 

63AT 
= 0  at r - - R ~  t > 0  (4b) 

Or 

k OAT =Aq(O,t) at r = R 0  t > 0  (4c) 

AT(r, 0, t) = AT(r, 2~z, t) 

at 0 = 0, and 0 = 2n t :> 0 (4d) 

AT(r,O,O)=O for t = 0 .  (4e) 

The above sensitivity problem (4) can then be 
solved using ADI techniques. 

4. THE ADJOINT PROBLEM 

To derive the adjoint equation we multiply equation 
(2a) with the adjoint function (or Lagrange multiplier) 
2(r, 0, t), integrate the resulting expression over the 
total time tf and the total circumferential domain 
0 ~< 0 ~< 2~z, and then add this result to the functional 
given by equation (3). The following expression 
results : 

J(q (0, t)) = i i  f (T-- R0 I f  

F ft32T 1 63T\ 1 t32T -] 

dtd0dr. (5) 

The variation AJ(O,t) of equation (5) is then 
obtained by the perturbational principle [10-1 1] as 
follows : 
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AJ(O, t) = Jo 2~-~(T--  Y)AT6(r-Rm) 

~ do 

F /02AT 1 OAT~ 1 t~2AT - 

| [eAT ,?AT'~ 

dtdOdr (6) 

where fi(') is the Dirac-delta function and R,, are the 
positions of the thermocouples. The second triple inte- 
gral term in equation (6) is integrated by parts, and 
the boundary conditions of the sensitivity problem 
defined by equation (4) are utilized to obtain the fol- 
lowing adjoint problem : 

{022 1 02 x~ 1 022 02 

02 2 + ~ ( T -  r)a(r-R.,) = 0 +eo~ 

in & < r < R o  0 < 0 < 2 =  t > O  (7a) 

a 2 = 0  at r R, t > 0  (7b) 
0r 

g2 
- - = 0  at r=Ro t > 0  (7c) 
Dr 

2(r, 0, t) = 2(r, 2n, t) 

at 0 = 0 ,  and 0 = 2 ~  t > 0  (7d) 

2(r, 0, t r ) = 0  for t = t f .  (Te) 

The adjoint problem (7) is different from the stan- 
dard initial value problems in that the final time con- 
dition at time t = tr is specified instead of the cus- 
tomary initial condition t = 0. However, the problem 
(7) can be transformed to an initial value problem by 
the transformation of the time variable as z = t r -  t. 
Then the standard ADI techniques can be used to 
solve the adjoint problem. 

4.1. Gradient equation 
After the above adjoint equation is obtained, the 

perturbation of functional still has one term left, it is 

AJ(O, t) = Ro2(Ro, O, t)Aq(O, t) dt dO. (8a) 
J0 

Before obtaining the expression of gradient equa- 
tion, we first introduce a notation of gradient of func- 
tional (the first Frechet derivative [18]). For 
q = q(O, t), 0e [0, 2r~] and t e [0, tr], are the functions 
considered as elements of functional space q eL2- 
norm. If  the functional increment can be presented as 

=f~"f i fJ (O,  dO (Sb) AJ(O, t) ' t)Aq(O, t) dt 

then J'(O, t) is called a gradient of functional. Finally, 
the gradient equation becomes 

J'(O, t) = R02(R0, 0, t). (8c) 

5. INVERSE SOLUTION BY CONJUGATE 
GRADIENT METHOD 

In this section an algorithm is presented for solving 
the two-dimensional inverse heat conduction problem 
described previously with the conjugate gradient 
method. The method is stable and converges quickly 
if some information is available for the final time 
condition of the unknown function q(O, tO, otherwise 
the inverse solutions at the final time will deviate from 
the exact solutions [8]. In this study, this is the case, In 
order to avoid such a difficulty, the modified conjugate 
gradient method [9] should be applied, or, for the 
purpose of simplicity, we can prolong the calculated 
time domain and then extract the inverse solutions 
just to the desired final time (i.e. the calculated time 
domain > the desired final time). 

The following iterative procedure [10-12] is used 
for the determination of the surface heat flux : 

qk+t=qk_flkp~ k = 0,1,2 . . . .  (9) 

where the direction of descent pk is determined from 
the following relation : 

pk = j,~ + y~pk-1. (10) 

Here pk- J is its value of P at step k -  1 and j,k is 
the value of the gradient of the functional at step k. 
Although different definitions of the conjugate 
coefficient 7k can be found in the standard texts on 
mathematics, we choose the form [15] 

fo~=flf[J'k(O,t)]2dtdO 
yk_  __ . . . . . . .  with y0=O.  (11) 

f2n f,f[j,k_,(O,t)]Z dtdO 
do do 

The coefficient ilk, which determines the search step 
size in going from qk to qk+t in equation (9), is 
obtained by minimizing j(qk+ 1) with respect to fl*, i.e. 

minJ(qk+~) = n~n f~" flf[T(qa-fl~Pk)- yl2 

(12a) 

First, the Taylor series expansion is used to linearize 
the right-hand side of this expression in the form 

min j(qk + 1 ) ___ min 
t~ pk 

x [r(q k) -~AT(P  ~)- Yy didO. (12b) 
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Then equation (12b) is minimized by differentiating 
it with respect to /~ and equating it to zero. After 
rearrangement, the' following expression is obtained 
for step size flk : 

I~ ~ joltf[AT(W)(T--Y)]dtdO 
flk = '  (13) 

f~"flfAT2(pg)dtdO 

Once pk is computed from equation (10) and flk 
from equation (13), the iterative process defined by 
equation (9) can be applied to determine q~+ ~ until a 
specified stopping ,criterion is satisfied. 

6. DISCREPANCY PRINCIPLE FOR STOPPING 
CRITERIA 

If the problem involves no measurement errors, the 
traditional check condition specified as 

j(qk+,) < ~2 (14a) 

where el is a small specified number. However, when 
the observed temperature data contain measurement 
errors, the inverse solution will tend to approach the 
perturbed input data, and the solution will exhibit 
oscillatory behavior as the number of iterations is 
increased [8]. Computational experience shows that it 
is advisable to use the discrepancy principle [8] for 
terminating the iteration process. 

The discrepancy principle establishes the value of e 
from equation (3) by assuming ( T -  Y) ~ a, where a 
is the standard deviation of the measurement error. 
This value of e is then used as a stopping criteria, i.e. 

j(qk+,) = f ~  f£f O.2 dtdO<~ez. (14b) 

7. THE ALGORITHM 

The algorithm for the computational procedure of 
the iterative scheme starting from the kth iteration is 
summarized as 

Step 1: qk(0, t) is available at the kth iteration, 
solve the direct problem given by equations 
(2) and compute T(r, O, t) ; 

Step 2 : knowing T(r, O, t) and the measured tem- 
peratures Y(r, O, t), solve the adjoint prob- 
lem defined by equations (7) and obtain the 
adjoint variables 2(r, 0, t) ; 

Step 3 : knowing ~(r, 0, t), compute the gradient of 
the functional, J'(O, t), from equation (8c) ; 

Step4:  knowing J'(O,t), first compute 7 k from 
equation (11) and then compute the direc- 
tion of descent P~ from equation (10) ; 

Step 5: knowing the direction of descent pk and 
setting Aq k = pk [14], solve the sensitivity 
problem given by equations (4) and deter- 
mine the sensitivity function AT(W) ; 

Step 6 : 

Step 7 : 

Step 8 : 

Step 9 : 

knowing A T(pk), compute step size flk from 
equation (13) ; 
knowing step size fig, compute new heat 
flux qk+~(0, t) from equation (9); 
check if the stopping criteria given by equa- 
tion (14b) is satisfied ; 
if not, repeat the above calculational pro- 
cedure until the stopping criteria given by 
equation (14b) is satisfied. 

8. RESULTS AND DISCUSSIONS 

To evaluate the validity of the present algorithm 
applied in a two-dimensional inverse calculation in 
predicting the surface heat flux of a roll, the tem- 
perature measurements inside the roll are needed, but 
such information is not available because no exper- 
iments were performed. Fortunately, Tseng provided 
a set of experiment data for the roll surface tem- 
perature as shown in Fig. 3(a), which was recorded 
with respect to time (time sequential information) at 
a specific surface location. The experimental set up is 
basically similar to ref. [1] and a thermocouple of 
type K is embedded in the surface to measure the 
temperature. The cooling water has a temperature of 
16°C and spray pressure of 0.46 MPa at 0 = 35 °, and 
the bite region is 0 = 50-60 °. 

However this temperature information needs to be 
the circumferential surface temperatures (spatial 
information) at a specific time to perform the inverse 
calculation. The technique used in ref. [1] is applied 
to convert the time sequential temperature infor- 
mation to the spatial information as shown in Fig. 
3(b), where the number of cycles are one less than in 
Fig. 3(a) for the reason stated in ref. [1]. The following 
physical quantities are obtained from Tseng's exper- 
imental devices and used in the calculations : 

k = 4 8 . 1 W m  l ° C - I  c = 4 9 0 J m - l o c  1 

p = 7 8 3 0 k g m  -3 ~o-- 155.6rpm 

R i = 0 . 3 5 m  R 0 = 0 . 3 5 5 m  

8T = 0.005 m. 

The reason for choosing above value for R~ is 
because the steady-state thermal layer thickness cal- 
culated based on ref. [17] is about 5 mm. The simu- 
lation of the interior measured temperatures is then 
calculated using the surface temperature information, 
which was obtained from Tseng, as the boundary con- 
dition, together with a proper initial condit ionf(r ,  0). 
Since the first cycle at t = 0 in Fig. 3(b) is actually the 
second cycle in Fig. 3(a), so the initial temperature 
distributionf(r,  0) can be simulated by using the first 
cycle of the modified temperature [t = 0 in Fig. 3(b)] 
as the boundary condition and t~ = 20°C as the initial 
condition (assuming the roll is initially at 20°C). Then 
calculate the temperature distribution for one cycle 
(the period of one cycle is 0.3856 s) and the tem- 
perature distribution at the end of the calculated cycle 
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Fig. 3. (a) Measured surface temperature (time sequential information). (b) Measured surface temperature 
(spatial information). 

1 8 0 0  

is adopted as the initial condit ion f ( r ,  O) in the direct 
problem calculation. Finally, the temperature dis- 
tribution at some specific position where the thermo- 
couples were assumed installed can be obtained and 
used as the simulated measured temperatures to pre- 
dict the surface heat flux in the inverse analysis. 

Since the surface temperature shown in Fig. 3(b) 
looks the same, the surface heat flux for only one cycle 
of  operation is estimated (t = 0.3856 s is needed). 
However, to avoid the difficulty in estimating 
q(Ro, O, tf) at the final time, we should perform the 
inverse calculation up to t = 0.4156 s (more than one 
cycle of  operation), and then the inverse solutions are 
extract to t = 0.3856 s. The inverse calculation in such 
a manner can eliminate the difficulty, as was stated 
before. 

In this study we will examine the inverse solution 
for different measured positions, i.e. the measured 
positions are assumed to be at (i) 0.2 and (ii) 1 mm 
from the roll surface, respectively. We also assume the 
standard deviation of  the measurement errors, a, are 
within 0.1 < cr < 0.3, and therefore, for both above 
cases, the number of  iterations can be taken as 35 
based on the discrepancy principle. The initial guess 
of  q is taken as zero in all the calculations that were 
shown in this section. Now let us illustrate some 

results obtained from numerical experiments for two 
different measurement positions. 

8.1. The measured position is 0.2 mm from the roll 
surface 

Figure 2 shows the geometry and grid distribution 
of  a roll. The bold point in Fig. 2 indicates the position 
where the thermocouple is installed. Figure 4(a) and 
(b) shows the comparison between the measured and 
estimated temperature at R = 0.3548 (i.e. 0.2 mm 
from the roll surface) and 0.355 m (i.e. the roll 
surface), respectively, for t = 0.3856 s (i.e. at the end 
of one cycle), while Figs. 5 and 6 show the three- 
dimensional plot of  the measured and estimated tem- 
perature at R = 0.3548 and 0.355 m, respectively. 

It  should be noted that  the simulated measured 
temperature distribution at R = 0.3548 m is calculated 
based on the surface measured temperature (which 
was obtained from Tseng) and the estimated tem- 
peratures at R = 0.3548 and 0.355 m are calculated 
from the direct problem (2) by using the estimated 
surface feat flux as the boundary condition. This 
implies that they are obtained from different bases. 
Figures 4(a) and 5 reveal that the estimated and 
measured temperatures at R = 0.3548 m are in a very 
good agreement and similar results are obtained at 
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4 0 O  

3 O 0  

2 0 0  

1 0 0  

0 

0 1 0 0  150 200  2 5 0  3 0 0  350  

R o l l  a n g l e  
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4 0 0 .  

3 0 0 ,  

200 • 

100 ' 

0 - i 

5O 

Meast l r lx l  

, • | . , • | . = • 

1 0 0  150 2 0 0  250 3 0 0  3 5 0  

R o l l  a n g l e  

Fig. 4. (a) The estimated and measured temperatures located at 0.2 mm from the roll surface at t = 0.3856 
s for case (i). (b) The estimated and measured temperatures located on the roll surface at t = 0.3856 s for 

case (i). 
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t~ 

12.,#;. .~,-.#,~A 

Fig. 5. Three-dimensional plot of the estimated and measured temperatures located at 0.2 mm from the 
roll surface for case (i). 

R = 0.355 m, as shown in Figs. 4(b) and 6. Finally, 
the estimated surface heat flux of  the roll and its value 
at the end of  one cycle (i.e. t = 0.3856 s) are shown in 
Fig. 7(a) and (b), respectively. Figure 7(a) and (b) 
indicates that the maximum prescribed heat in the bite 
region is about 4 "< 107 W m -2 at 60 ° roll angle, and the 
heat flux decreases drastically at 0 = 35 ° due to water 
cooling. In additiLon, the heat flux should be negative 
outside the bite region because heat is dissipated into 

the atmosphere. However,  the heat flux at 110 ° roll 
angle becomes positive. This is because the measured 
surface temperature from 100 to 110 ° roll angle did 
not  decrease as expected. Such a phenomena may 
result from measurement errors. Once the surface heat 
flux is estimated, the surface heat transfer coefficient 
of  a roll can be calculated by Fourier 's  law, provided 
that the ambient temperature and the temperature of  
the strip within the bite region are given. 
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I 

[.. ,  
I 

Fig. 6. Three-dimensional plot of the estimated and measured temperatures located on the roll surface for 
case (i). 

8.2. The measured position is 1 mm from the roll surface 
Figure 2 shows the geometry o f  the problem. The 

estimations of  temperature and surface heat flux are 
shown in Figs. 8-11. F rom Figs. 8-11 we conclude 
that the estimated and measured temperatures at 
R = 0.354 m match quite well with each other, while 

the estimations of  surface temperatures are worse than 
case (i). This is because the sensor in this case was 
placed too far away from the roll surface: thus the 
surface information is damped and the real surface 
conditions can not be recast very well. Finally the 
estimation o f  surface heat flux of  a roll is given in Fig. 
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Fig. 7. (a) Three -d imens iona l  p lo t  of  the es t imated  roll  surface heat  flux for  case (i). (b) The  es t imated  roll  
surface heat  flux at  t = 0.3856 s in (a). 
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Fig. 8. (a) Tile es t imated  and  measu red  t empera tu res  loca ted  at  1.0 m m  from the roll  surface at  t = 0.3856 
s for case (ii). (b) The  es t imated  and  measu red  t empera tu res  located on the roll  surface at  t = 0.3856 s for 

case (ii). 
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8 Measured 

~ 8. Estimated 

Fig. 9. Three-dimensional plot of the estimated and measured temperatures located at 1.0 mm from the 
roll surface for case (ii). 

11, where the strange phenomena of  heating at I l0 ° 
roll angle did not  appear due to the damping effect of  
the measured temperature. 

F r o m  the comparison of  the above two cases we 
found that, for all the inverse calculations performed 
here, the unknown values can be estimated from zero 

initial guess within only 35 iterations. This shows the 
fast convergence speed in the conjugate gradient 
method. The measured position has a significant effect 
on the inverse solutions: this is because a very thin 
thermal layer is formed in the transient process of  roll 
milling. 



Surface thermal behavior 1029 

Fig. 10. Three-dimensional plot of the estimated and measured temperatures located on the roll surface 
for case (ii). 

9. CONCLUSIONS 

The conjugate gradient method with adjoint equa- 
tion was successfully applied for the solution of the 
two-dimensional inverse-problem involving deter- 
mination of the unknown surface thermal behavior of 
a roll. The surface heat transfer coefficient of the roll 

can be calculated and used in the thermal stress cal- 
culation thereafter, provided that the ambient tem- 
perature and the temperature of the strip within the 
bite region are known. 

Comparison of the results obtained from two 
different temperature measured positions reveal that, 
in order to yield better surface conditions, the position 
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( a )  

5 e + 7  t 
4~-71 

1 at 0.3856 sec 

A 

- l e + 7  I - o - o • , - , - , - = • 

0 5 0  1 0 0  1 5 0  2 0 0  2 5 0  3 0 0  3 5 0  

( b ) Roll angle 

Fig. 11. (a) Three-dimensional plot of the estimated roll surface heat flux for case (ii). (b) The estimated 
roll surface heat flux at t = 0.3856 s in (a). 

of  the sensor is preferred closer to the roll surface, 
since the thermal  layer is very thin.  The  results of  
the inverse solut ion show tha t  the conjugate  gradient  
me thod  converges very fast  (within 35 i terat ions)  to 
obta in  the inverse solut ion and  does not  require prior 

in format ion  on  the funct ional  form of  the u n k n o w n  
quantit ies.  
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